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Abstract

A nume rical a pproach that cou ples Loren tz-Drude model
incorporated Maxwell equations with Schrodinger equation
is presented for the simulation of pla smonics nanodevices.
Maxwell equa tions w ith Lore ntz-Drude (LD ) dispersive
model are a ppliedtol argesizec omponents, w hereas
coupled Maxwell and Schrodinger equations are applied to
components where quantum effects are needed. The finite
difference time do main me thod (F DTD) is appl ied to
simulate these coupled e quations. Numerical results of the
coupled ap proach are compared w ith th e conventional
approach.

1. Introduction

The miniaturization of devices and high speed data are main
challenges with existing silicon based technologies, and the
reasons behind are diffraction | imit and R C time delay
respectively. Fo rthe solution of such challenges different
efforts have been done in the past, how ever, an area known
as plasmonics has been introduced recently to han dle them,
and it has shown promising app lications [1-3]. Plasmonics
deals w ith co llective osci llation of fre e electr ons a tt he
interface of dielectric and metal, which remain bounded to
the surface. Plasmonics is generally categorized into surface
plasmon pol aritons (S PP) and 1 ocalized surface plasmon
resonance (LS PR). The f irst one is mor e suitable for

information transmission rela ted applications, w hile th e
second one is preferable for sensing ap plications. A wide
range of plasmonic devices have been simulated, fabricated
and characterized [1-10]. Some interesting results show that
the surface plasmon polariton has strong analogy to Young’s
double—slit experiment and is discussed in [4]. The concept
of semiconductor plasmonics using a so lid state model that
includes Pauli exculsion principle, state filling effect, Fermi-
Diract hermalization, an d externa 1 magnetic fie 1d is

presented in [5]. A numerical approach that consists of solid
state and Lorentz-Drude m odels is presented t o simul ate
active plasmonics devices [6]; and it is also used to simulate
a plasm onic source , and t hen 1 ight ex traction from t he
source [7]. S ome other active plasmonic de vices such as
Plas-MOStor (pla smonic based trans istor), ultrafa st a ctive
devices, pa ssive a nd ac tive photonics c ircuits using S PP
have been reported in [8-10]. The concept of r eplacing the

conventional gold and silver with doped semiconductors and
intermetallics has been discussed in [11].

Plasmonic bas ed phenomena have pote ntial t o handle t he
challenges with existing CMOS and photonics technologies,
and ca nbe u sedtoi nterface ph otonics a nd e lectronics
devices e ffectively. H owever, m odeling and simulation of
such interfacing domains become complex due to di fferent
scales of components. These complexities can be solved by
implying different techniques. Nonetheless, when the size of
a device redu ces toa few nanom eters, quantum effec ts
dominate a nd the ir ¢ onsiderations become important to
maintain the ac curacy. Therefore, to incorporate them into
modeling and simulation te chniques, modifications in t he
conventional numerical tec hniques ar e neede d, w hereas
conventional numerical techniques have performed well for
the simulation of bulk materials and devices.

For quantum effects there is need to adopt some appropriate
approaches from qua  ntum m echanics,a nd usually
Schrodinger equa tion is ¢ onsidered to incorporate su ch
effects. On the other hand Maxwell equations are used for
electromagnetic effec ts. Therefore, these equa tions are
coupled to simulate those applications in w hich ¢ ombined
effects are needed [12-13]. In [12] a hybrid transmission line
matrix (TLM) [14] and FDTD [15],andin [13] a hybrid
locally one dimensional (LO D)-FDTD [16] and F DTD
methods are applied to coupled non-dispersive Maxwell and
Schrodinger equations. In [12] the FDTD method is applied
to Schrodinger equation to simulate carbon nanotube while
the TL M metho dis appliedtot he conventional n on-
dispersive Ma xwell e quations to simula te the r est of the
structure. Whereas in [13], the FDTD method is ap plied to
Schrodinger equation to simulate a semiconductor nanowire
and the LOD-FDTD method is applied to the conventional
non-dispersive Maxw ell e quations t o simulate rest of t he
structure efficiently. In brief, in [12-13] hybrid ap proaches
are a pplied t o na notube, nan owire and non d ispersive
materials.

In this paper, as compared to the [12-13], the LD dispersive
model [17]1 ncorporated Maxwell equa tions are coup led
with S chrodinger equa tiont o sim ulate pl asmonic
nanodevices. Schrddinger e quation i ncorporated Maxw ell
equations are applied to simulate the components in which
quantum effects are needed. The FDTD method is applied to
simulate the se coup led equ ations. In sect ion 2, deta iled



formulation of the Ma xwell eq uations w ith LD mode 1,
formulation of the S chrédinger equation in the presence of
external elec tromagnetic field, and discretization us ing the
FDTD method are presented. The reason of using LD model
as compared to the other dispersive models is because of its
better accuracy for broader range of wavelength. In section
3, numerical results of the coupled approach are compared
with those from the conventional Maxwell approach and at
the end conclusion is given.

2. Formulations

The time de pendent Maxw ell e quations w ith freque ncy
dependent permittivity a nd quantum cur rent de nsity are
written as
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where Jg is quantum current density, and is obtained from
Schrodinger equa tion. &(w)=gye,(0) is the frequency
dependent permittivity and is obtained from Lorentz-Drude
dispersive m odel. In the model, D rude pa rt dea Is with
intraband effe cts an d is gen erally used fo r fre e electr ons,
whereas, the Lorentz model deals with interband effects and

generally deals with bounded electrons. The LD model is
written as
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where ® oD is plas ma fre quency a nd I'p is damping
constant assoc iated w ith D rude mode 1 (intr aband e ffects)

, (DpL is plasm a fr equency, I, is da mping c onstant, a nd

op is resona nce fre quency o f the first p ole of Lore ntz

model (interband effects). After pu tting equation (3) in to
equation (2) and by using the auxiliary differential equation
(ADE) approach, and some mathematical simplifications we
get following equations
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Where terms with subscript D and term Q denote Drude
model and terms with subscript L and term P denote Lorentz
model. D uring the simu lation of a struct ure w itht he
proposed a pproach four different sc enarios canarise i) a
section of th e struc ture in w hich there is nonee d of
dispersive model and quantum current density, ii) a region in
which quantum current density is required but not dispersive
model, iii) a section in which dispersive model is needed but
not quantum current density, iv) a re gion where both effects
are needed. Under all the se sce narios equation (2) w illbe
effected. In this section, as an exam ple formulation for the
scenario (iv) is presented, however, it can be modified based
on the situation.

After some mathematical simplifications equation (4) can be

written as
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The discritized form of the equations (7) to (9) is given as
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E§”(i,j+l,k) :QLEY"(i,jﬁLl,k) where r=x,yand z.
2 Y 2 Equations (10) to (12) are similar to conventional magnetic
nal 1 1 el 1 1 field equations in FDTD method and are discritized as
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Qe | o PPk + ) PG, kL) soaw Maxwell e quations (equation 13 to 15 with LD model and
b bl 2 quantum current density) after applying the FDTD method.
) o For quan tum effectsthe ti me de pendentS chrodinger
Equations (5) and (6) are discritzed as equation is con  sidered in the pr esence of e  xternal
electromagnetic field and is written as
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Temporal discretization of equations (22) and (23) is given
as
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After calc ulatingt here al and im aginary pa rts ofth e
wavefunction, and then by using the following relation, the
quantum current density is obtained.
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Spatial d iscretization o fequa tions (24-26)an dt he

J g“ (r) in equations (13-15) depends on

corresponding term
the user how he/she want to im plement these e quations in
one dimensional or three dimensional fashions. The meshing
interface between Maxwell and Schrodinger e quations also
depends on o ne or three dimensional patter n of spat ial
discretization. We ha ve used bot h pa tterns and found the
similarr esults. Fori nterface be tween Maxw ell and
Schrodinger e quations, w ave function, quantum curr ent
density and the corresponding electric field are discretized at
same poin t. The val ue o fquan tum current dens ity at
interface or boundary of b oth d omains is adde d up w ith
electric field. In other words, the qua ntum current den sity
can also be used as a source for the Maxwell equations i.e. at
the b oundary of Schrddinger equat ion, quan tum curr ent
density is injected into Maxwell e quations. The vec tor and
scalar potentials areu sedt oi ncorporate thee xternal
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electromagnetic fiel d i nto S chrédinger equat ion along t he
nanowire. In the simulation procedure, the magnetic field is
updated first, the n v ector p otential, scalar pot ential, wave
function, quan tum cur rent d ensity, and at the e nd ele ctric
field are updated and this sequence continues, until the last
iteration.

3. Numerical Results

For num erical results two different exa mples tha t inc lude
dispersive and quan tum effe cts are studied. A generalized
structure i s show n inF ig. 1,in  which sem iconductor
nanowires are use d as inter connects be tween p lasmonics
nanodevices. The size of plasmonics de vices ¢ an be from
few nanometer to few hundred nanometers, whereas the size
of inter connects ca nbe few n anometers. For such
applications in the pa per we use LD dispersive model for
large si ze ¢ omponents, w hereas S chrodinger eq uation is
used for quantum effects needed region.

Plasmonics Devices Plasmonics Devices

Nanowires

Fig. 1: A ge neralized st ructure for ¢ oupled approach, in
which plasmonics devices are interconnected via nanowires.

The structures studied in the paper have operating concept
similar to t he generalized struc ture in F ig.1. The structure
for the first example is shown in Fig. 2(a). It consists of two
gold nanospheres, each with a radius of 20 nm, with a gap of
10 nm in between them, and a 2 nm thick and 70 nm long
semiconductor nanowire (NW)isplac eda t centerin

between na nospheres. The purpose o f'the struct ureis to

study t he qua ntum effec ts and then comparison o f't he
coupled and conventional approaches. The cell size in each
direction is uniform i.e. 2nm. To maintain the stability of the
Schrodinger equation with the FDTD method, the time step
should be smaller than the C ourant F riedrich Le vy (CFL)
limit of Maxwell equations [ 18]. Therefore, in the coupled
approach, the time step of the Schrédinger equation is taken
as the time step for whole simulation domain. We take time
step 1 00 times sm allert hant hato f the CLN limit to
accommodate the NW, in other words, accuracy will also be
better if the cell size is smaller. We have checked method
with d ifferent grids orcell sizes and itis found t hat the

proposed approach converges properly and in addition there
isn o sta bility issue ,a s longa sthe ti mestep fort he
simulation domain is same as of Schrodinger equation. The
parameters used for dispersive model are same as gi ven in
[17]. The surrounding medium of the structure is free space.
A Gaussian pulse is used as a source to get field localization
in between nanospheres and a Gaussian pulse at NW is used
to excite the w avefunction. F our diffe rent field e xcitation
scenarios may arise during the simulation of the structure, I)
excitation th atca n g enerate f ield localization b etween
nanospheres, II) source abo ve or below the N Win the



surrounding medium, III) use of qua ntum current density as
a sour ce, IV) combination of the abo ve t hree sc enarios.
Figure 2 (b) shows snapshot of field localization in between
nanospheres without havingt he NW in the Xy pl ane,
whereas Fig. 2 (c) depicts the snapshot of the total electric
field inte nsity in the Xy p lane with n anowire. Th ese both
snapshots are obtained at steady state. In this application the
excitation scenario (I) is used. Results show that most of the
field is con fined along the NW. Figure 2(d) shows the field
intensity with and without Schrédinger equation with respect
to number of t ime steps and depicts the difference between
both circumstances. Figure 2 (e) is plo tted with respect to
energy (¢V )w ithan dw ithout qua ntum effects. The
difference of 0.16 e Visobserved. The field ob servation
point is at 26 nm away from the center of nanospheres and
12 nm 1 eft from thec enter ofthe NW . The se re sults
illustrate the ¢ lear diffe rence be tween coupleda nd
conventional appr oaches. The  possible reason of the
difference between the resul ts of bo th appr oaches is
quantum effect. Because in the case of co upled approach,
the quantum current density takes into account, kinetic and
potential energies of elec trons, vector and scalar potentials.
Inclusion of these fa ctors i s ca use of shiftint he fie Id
intensity in Fig. 2 (d and e). It is also observed that if the
structure is made of b ulk m aterials, then thereis no
difference in the numerical results of both approaches, and it
is validation of the proposed approach.

The structure of sec ond example is shown in Fig. 3 (a), in
which two pairs of gold nanospheres are placed at both ends
of the nanowire. The thickness and length of the NW, radius
and distance between nanospheres is same as in example 1
at first, however, latter on the distance between nanospheres
is varied.

R =20 nm
——=mnl,

Nanowire
d =10 nm

R =20 nm
-

(b)
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Fig. 2: (a) Structure for example 1, (b) Field intensity in the
Xy plane without nanowire (c) Field intensity in the xy plane
with nanowire (d) Normalized magnetic field intensity with
and without Schrodinger equation (e) Normalized field with
respect to energy (eV).

Figure 3(b) show s the n ormalized electric fie 1d i ntensity
near the center of the NW, under two different situations, 1)
the field is e xcited and localized betw een nan ospheres at
one-end of the NW (from example 1, green color line), ii)
the field is ex cited and localized at both-ends o fthe NW
(example 2, red c olor line). It r epresents that in the case of
resonance field at one end (e xample 1), the field becomes
weaker w ith the pa ssage of time, w hile in the c ase of
resonance fie Id a tboth ends ofthe N W ( example 2),

amplitude of field remains stronger for longer time along the



NW. The reason of stronger field at NW in the second case
is due to two sources i.e. at ea ch end of the wire and this
causes resonance for longer time.

R =10 nm
2 a 1 l{-:rlm;
Nanowire
d=10nm d=10 nm
R =10 nm
= o i 1] =:||m;
(a)
08
=
o 0.6
L o4l
2
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= -04r U
E .06
Z° .08t — Resonance at both ends of NW |
1 — Resonance at one end of NW
o o5 1 15 2 25 3 35 4
Time Steps x10°4
(b)

Fig. 3: (a) Structure for example 2, (b) Electric field at NW
with 1 ocalized field at one end and 1 ocalized field at b oth
ends of the nanowire.

These struc tures may have num ber of a pplications in
different areas such as bio sensing, e.g. heating and bl ood
sample ana lysis. Beca use of com paratively longer and
stronger field oscillations, second example can be used for
blood or liquid analysis more effectively as compared to the
example 1. Figure 4 denotes the normalized field pattern for
structure 3(a). In this case three different excitation sources
are used, localized fields at both ends between nanospheres,
and third close to the center of the NW. The field pattern in
Fig. 4 (a)is captured dur ing the trans ient sta te of't he
method, where a small value at the center of the NW shows
the excitation of the wavefunction. Figures 4 (b) and 4 (c)
show the e lectric an d m agnetic fiel d patterns for sa me
structure a t st eady s tate res pectively. These fie ld patterns
describe th at at steady state most of the field c oncentrates
along the NW. However, the field values bec ome w eaker
and weaker with the passage of time due to field radiation in
the surrounding media. These patterns are captured when the
gap distance between the nanospheres is 10 nm.
Nonetheless, the patterns and resul ts a re als o stud ied for
variable d istance be tween n anospheres, and o bserved the
similar phenomena but with different field intensities. Figure
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5 show s the fiel d p lot of t he struc ture with and w ithout
incorporating the S chrédinger e quation. F igure 5 (a)
indicates el ectric fi eld i ntensity a t NW wi th respect to
number of time steps, dotted line sh ows the result without
quantum ef fect a nd the sol id line with qu antum ef fects.
Figure 5 ( b) ind icates the corresponding va lues of t he
electric field with respect to energy (eV).

(b)

(©

Fig. 4: Field pattern in the Xy plan for structure 3 (a), (a)
Field 1ocalization at transient state between nanospheres at
both ends of NW and a third source is below and close to the
center of NW (b) Electric field pattern at steady state, (c)
Magnetic field pattern at steady state.



It shows that the dominant mode with quantum effects is at
21.96 eV, while without quantum effects is at 22.65 eV, and
the d ifference of 0. 69 eV is observe d. The se resul ts are
observed atapo inton N W, w hen the distance be tween
nanospheres is 5 nm. This plot sh ows that the fiel d values
near to 0 eV with quantum effects is smoother, as compared
to the other curve (without quantum effect) that shows some
abnormality, and the reason is absence of qua ntum effects.
The prop osed approach may have po tential applications in
the fie 1ds of ac tive nan o-plasmonics, optoelectronics,
integration of na no-plasmonis and nano-electronics, a nd
Nnano-sensors.
1 o . : . . !
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Fig. 5: Field plot for struc ture 3(a), (a) Electric field with
respect to number oft imes tepswi tha ndwi thout
Schrodinger equa tion, b) El ectric fiel d w ith respec tt o
energy (eV) with and without Schrodinger equation.

4. Conclusion

An approach that c ouples time d ependent Schrédinger and
LD di spersive model inc orporated Ma xwell eq uations is
developed and implemented for plasmonics nanodevices and
the FDTD method is applied for ana lysis. The appr oach is
applied t o str uctures tha tinv olve b oth dis persive a nd
quantum effects. Re sults are compared wi th an d w ithout
quantum effects a nd cle ar difference is obs erved am ong
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them. H owever, botha pproachesd id notsh owan y
difference in numerical resul ts for bul k mat erials. T he
proposed approach pa ves the way form odeling and
simulation of  nanodevices inthew ide spectrum of
electromagnetics, and where quantum effects are needed.
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