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Abstract
We describe here a Vector Finite Difference approach to the
evaluation of waveguide eigenvalues and modes for rect-
angular, circular and elliptical waveguides. The FD is ap-
plied using a 2D cartesian, polar and elliptical grid in the
waveguide section. A suitable Taylor expansion of the
vector mode function allows to take exactly into account
the boundary condition. To prevent the raising of spuri-
ous modes, our FD approximation results in a constrained
eigenvalue problem, that we solve using a decomposition
method. This approach has been evaluated comparing our
results to the analytical modes of rectangular and circular
waveguide, and to known data for the elliptic case.

1. Introduction
In many applications, such as the analysis of waveguide
junctions using mode matching [1], the knowledge of both
eigenvalues and field distributions of waveguides modes [2]
is required. The same type of information is also required
in the analysis, using the method of moments (MoM), of
thick-walled apertures [3]. Indeed, these apertures can be
considered as stub waveguides, and the modes of these
guides are the natural basis functions for the MoM [4, 5].

Apart from some simple geometries, mode computation
cannot be done in closed form, so that suitable numerical
techniques must be used. Until now, many different numer-
ical techniques have been proposed. The most popular are
the Finite Difference (FD) Method [6, 7] and scalar and vec-
tor Finite Element Method (FEM). FD techniques, despite
of their long history, are still very popular because of their
simplicity and computational effectiveness. However, they
compute the Hertz potential eigenfunctions, so that, since
the basis functions of the MoM are the vector eigenfunc-
tions, a numerical derivative is required, which can results
in a reduced accuracy.

Aim of this work is to present the direct computation
of mode vectors in a waveguide, using a finite difference
(FD) approximation of the vector Helmholtz equation on a
suitable discretization grid. Since we are mainly interested
in using those modes in the MoM, the entire development
will be expressed in term of equivalent magnetic surface
currents. For each grid point, suitable second–order Taylor
approximations allow to replace the continuous eigenfunc-
tion problem with a discrete one. This leads to a matrix

eigenvector problem, when suitable conditions are added.
These come out from the boundary conditions (which are
included directly in the problem matrix), and the solenoidal
or irrotational condition on mode vectors. This constrained
eigenvalue problem can then be solved using linear algebra
techniques [8].

We consider here rectangular, circular and elliptic [9]
waveguides. In order to improve both the accuracy and the
computational effectiveness, a discretization grid fitting ex-
actly the waveguide boundary is chosen. Therefore, our FD
approach has been implemented using cartesian, polar and
elliptic frameworks.

2. Description of the Technique
Let us consider a waveguide. The TE mode vectors −→e are
the eigenfunctions of the Helmholtz equation :


∇2

t
−→e + k2t

−→e = 0
∇t · −→e = 0
−→e ×−→

in

∣∣∣
C
= 0

(1)

where C is the contour of the waveguide section. If we in-
troduce the (two-dimensional) magnetic current

−→
M equiva-

lent to the transverse field −→e =
−→
iz ×−→

M we get from (1)

∇2
t
−→e = −∇t ×∇t ×−→e = −∇t ×

[−→
iz∇t ·

−→
M

]
=[

−∇t ×∇t ×
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From (3), it follows that ∇t×
−→
M = 0. When substituted

in (1) , after replacing and collecting terms we get:
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Figure 1: Vectors geometry with respect to the contour of
the conductor.

The TE eigenvalue problem can therefore be rewritten,
taking into account the contour geometry as in Fig.1, as:


∇2

t

−→
M + k2t

−→
M = 0

∇t ×
−→
M =

∂My

∂x
− ∂Mx

∂y
= 0

−→
M · −→in

∣∣∣
C
= Mx cos (α) +My sin (α) = 0

(5)

In order to solve problem (5) with FD, both the un-
known

−→
M and the equations of (5) are discretized, i.e., eval-

uated only on the points of a suitable grid. In this way,
for each discretization point, we have a difference equa-
tion, corresponding to the first of (5), expressed in terms of
the samples of

−→
M . This equation takes into account also

the boundary condition on the waveguide contour. On the
other hand, the requirement ∇t ×

−→
M = 0, suitably dis-

cretized, must be imposed separately. As a consequence,
(5) becomes a constrained matrix eigenvalue problem. It is
worth noting that the latter requirement could be incorpo-
rated into the eigenvalue equations. In this way a standard
matrix eigenvalue problems follows, but it can contain spu-
rious solutions, which are not present in our formulation.

3. Rectangular waveguides
Let us consider first a rectangular waveguide, whose dis-
cretization grid is shown in Fig.2. Since this is the simpler
structure, we discuss in detail, for this case, the passage
from (5) to the discretized form.

Figure 2: TE grid for the rectangular case.

The discretization of the first of (5) depends on the grid
point that we consider. For an internal point P , as in Fig. 3,
we can use a second-order Taylor expansion as:

Figure 3: Internal Point of TE grid.

−→
MB =

−→
MP +

∂
−→
M

∂y

∣∣∣∣∣
P

· (−∆y) +
1

2

∂2−→M
∂y2

∣∣∣∣∣
P

· (−∆y)
2

−→
MD =

−→
MP +

∂
−→
M

∂y

∣∣∣∣∣
P

· (+∆y) +
1

2

∂2−→M
∂y2

∣∣∣∣∣
P

· (+∆y)
2

(6)

Adding these equation we find:

∂2−→M
∂y2

∣∣∣∣∣
P

=
1

∆y2
·
(−→
MB +

−→
MD − 2

−→
MP

)
(7)

Likely in the x direction:

∂2−→M
∂x2

∣∣∣∣∣
P

=
1

∆x2
·
(−→
MA +

−→
MC − 2

−→
MP

)
(8)

Summing (7) and (8) we obtain :

∇2
t

−→
MP =

−→
MA

∆x2
+

−→
MC

∆x2
+

−→
MB

∆y2
+

−→
MD

∆y2
+

−
(

2

∆x2
+

2

∆y2

)
−→
MP

(9)

We need also to discretize the second of (5). Using a
first–order Taylor expansion (compare (6) ) we easily get:(

∂My

∂x
− ∂Mx

∂y

)
=

MC,y

2∆x
− MA,y

2∆x
− MD,x

2∆y
+

MB,x

2∆y
= 0

(10)

For a boundary point P , as in Fig.4, we need a different
approach, since D is not a sampling point for the current.
We force in D the boundary condition MD,y = 0, and in-
corporate it into the FD matrix. Now MD,y can be obtained
as a Taylor expansion:
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Figure 4: Boundary point.

MD,y =

MP,y +
∂My

∂y

∣∣∣∣
P

·
(
+
∆y

2

)
+

1

2

∂2My

∂y2

∣∣∣∣
P

·
(
+
∆y

2

)2

(11)
which can be added to 1

2MB,y given by (6), to get:

∂2Mx

∂y2

∣∣∣∣
P

=
1

∆y2
· (MH,x − 2MB,x +MP,x) (12)

and so for a boundary point P :

∇2
tMP,y =

MA,y

∆x2
+

MC,y

∆x2
+

3MB,y

4∆y2
+

−
(

2

∆x2
+

4

∆y2

)
MP,y

(13)

For the x–component ∇2
tMP,x we need another grid

point H (see Fig. 4), in which:

MH,x =

MP,x +
∂Mx

∂y

∣∣∣∣
P

· (2∆y) +
1

2

∂2Mx

∂y2

∣∣∣∣
P

· (2∆y)
2 (14)

From (14) and MB,x given by (6) we get:

∂2Mx

∂y2

∣∣∣∣
P

=
1

∆y2
· (MH,x − 2MB,x +MP,x) (15)

and the x–component of (9) is replaced by:

∇2
tMP,x =

MA,x

∆x2
+

MC,x

∆x2
+

MH,x

∆y2
− 2

MB,x

∆y2
+

−
(

2

∆x2
+

1

∆y2

)
MP,x

(16)

In the same way, the condition (10) becomes:

MC,y

2∆x
− MA,y

2∆x
− MH,x

2∆y
+ 4

MB,x

2∆y
− 3

MP,x

2∆y
= 0 (17)

The FD matrix equivalent to (5) is then given by (9) (or
(15) and (16) for a boundary point) with the constraint (10)
or (17).

It is worth noting that the appproach described in this
section can be used on more general waveguides, i.e., on all
waveguides whose boundary is made of segments parallel
to the cartesian axes.

4. Extension to the Circular and Elliptic
waveguide

4.1. Circular waveguides

Figure 5: TE grid for a circular waveguide.

Let us consider now the discretization of (15) for a cir-
cular waveguide. In order to maintain the correct boundary
condition, we use a polar discretization grid, as in Fig.5,
with spacing ∆r,∆ϑ.

We start from the expansion of the vector Laplace oper-
ator in polar coordinates:

(∇2
t

−→
M)r =

∂2Mr

∂r2
+

1

r
· ∂Mr

∂r
− Mr

r2
+

1

r2
· ∂

2Mr

∂ϑ2
− 2

r2
· ∂Mϑ

∂ϑ

(∇2
t

−→
M)ϑ =

∂2Mϑ

∂r2
+

1

r
· ∂Mϑ

∂r
− Mϑ

r2
+

1

r2
· ∂

2Mϑ

∂ϑ2
+

2

r2
· ∂Mr

∂ϑ
(18)

For each internal point (whose geometry is quite sim-
iliar to the one of Fig.3), using suitable Taylor approxima-
tions, as in the rectangular case, the derivatives in (18), in
the sample point P , can be expresssed as:

∂2Mϑ

∂ϑ2
=

MA,ϑ +MC,ϑ − 2MP,ϑ

∆ϑ2

∂Mϑ

∂ϑ
=

MC,ϑ −MA,ϑ

2∆ϑ
∂2Mϑ

∂r2
=

MB,ϑ +MD,ϑ − 2MP,ϑ

∆r2

∂Mϑ

∂r
=

MD,ϑ −MB,ϑ

2∆r
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∂2Mr

∂r2
=

MB,r +MD,r − 2MP,r

∆r2

∂Mr

∂r
=

MD,r −MB,r

2∆r
∂2Mr

∂ϑ2
=

MA,r +MC,r − 2MP,r

∆ϑ2

∂Mr

∂ϑ
=

MC,r −MA,r

2∆ϑ

When substituted in (18) we get:

(∇2
t

−→
MP )r =

MB,rK1 +MD,rK2 +MA,rK3 +MC,rK3

−MP,rK4 +MA,ϑK5 −MC,ϑK5

(∇2
t

−→
MP )ϑ =

MB,ϑK1 +MD,ϑK2 +MA,ϑK3 +MC,ϑK3

−MP,ϑK4 −MA,rK5 +MC,rK5

(19)

Figure 6: Boundary point of polar framework.

For a boundary point, such as P in Fig.6, the boundary
condition is MD,r = 0 and this condition can be incorpo-
rated into the FD matrix, much in the same way as in the
rectangular case. The result is that (19) is then replaced by:

(∇2
t

−→
MP )r =

MB,rH1 +MA,rK3 +MC,rK3

−MP,rH4 +MA,ϑK5 −MC,ϑK5

(∇2
t

−→
MP )ϑ =

MH,ϑK1 −MB,ϑH2 +MA,ϑK3 +MC,ϑK3

−MP,ϑH5 −MA,rK5 +MC,rK5

(20)

The constants of (19) and (20) are:

K1 = 1
∆r2 − 1

2rp∆r H1 = 4
3∆r2 − 1

3rp∆r

K2 = 1
∆r2 + 1

2rp∆r H2 = 2
∆r2 + 4

2rp∆r

K3 = 1
r2p∆ϑ2 H3 = 1

rp∆r + 2
rp∆ϑ2

K4 = K1 +K2 + 2K3 +
1
r2p

H4 = 3H1 +H3 + 2K3

K5 = 1
2r2p∆ϑ H5 = 1

rp∆r + 3
2rp∆r

− 1
r2p

− 2K3

The constraint:

∇×−→
M =

1

r
· ∂ (r ·Mϑ)

∂r
− 1

r
· ∂Mr

∂ϑ

=
1

r
·Mϑ +

∂Mϑ

∂r
− 1

r
· ∂Mr

∂ϑ
= 0

(21)

can be discretized in an internal point using a first–order
Taylor expansion as:

MP,ϑ

rp
+

MD,ϑ −MB,ϑ

2∆r
− MC,r −MA,r

2rp ∆ϑ
= 0 (22)

which becomes, in a boundary point:

(
1

rp
+

3

2∆r

)
MP,ϑ+

MH,ϑ

2∆r
−4MB,ϑ

2∆r
−MC,r −MA,r

2∆rp ϑ
= 0

(23)
It remains to consider the center of the circle. In this

point it is not possible to use a Taylor expansion since it
is a singular point for the polar framework. Therefore, we
integrate the first of (5) on a circle S with radius ∆r/2 :∫

S

∇2
t

−→
M · dS = −k2t

∫
S

−→
M · dS (24)

Because of (18), the Laplace operator becomes :

∇2
t

−→
M = ∇t

(
∇t ·

−→
M

)
−∇t ×∇t ×

−→
M = ∇t

(
∇t ·

−→
M

)
and substituting in (24):∫

S

∇t

(
∇t ·

−→
M

)
· dS = −k2t

∫
S

−→
MdS (25)

We apply the theorem of the gradient [10] to the l.h.s of
(25) :

∫
S

∇t

(
∇t ·

−→
M

)
dS =

∫
C

(∇t ·
−→
M)

−→
in dl =

∫
C

(∇t ·
−→
M)

−→
in

∆r

2
dϑ

(26)

From the divergence of
−→
M in polar coordinates we get,

for the r.h.s of (26):∫
C

∂ (rMr)

∂r

−→
in

∆r

2
dϑ+

∫
C

∂Mϑ

∂ϑ

−→
indϑ (27)

Since
−→
in =

−→
ix cos (ϑ) +

−→
iy sin (ϑ), we can decompose

(26) in a x–component:∫
C

∂ (rMr)

∂r

−→
ix cos (ϑ)

∆r

2
dϑ+

∫
C

∂Mϑ

∂ϑ

−→
ix cos (ϑ) dϑ

(28)
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Figure 7: component of M between center and next point.

and a y–component:∫
C

∂ (rMr)

∂r

−→
iy sin (ϑ)

∆r

2
dϑ+

∫
C

∂Mϑ

∂ϑ

−→
iy sin (ϑ) dϑ

(29)

The second integral of (28) and (29) can be evaluated
by parts as:

∫
C

∂Mϑ

∂ϑ
· −→ix cos (ϑ) · dϑ =

= |Mϑ cos (ϑ)|+π
−π −

+π∫
−π

−Mϑ sin (ϑ) · dϑ =

=

+π∫
−π

Mϑ sin (ϑ) · dϑ

(30)

∫
C

∂Mϑ

∂ϑ
· −→iy sin (ϑ) · dϑ = −

+π∫
−π

Mϑ cos (ϑ) · dϑ (31)

As a consequence, (25) becomes:

∫
C

∂ (rMr)

∂r
cos (ϑ)

∆r

2
dϑ+

+π∫
−π

Mϑ sin (ϑ) dϑ

 −→
ix

+

∫
C

∂ (rMr)

∂r
sin (ϑ)

∆r

2
dϑ+

+π∫
−π

Mϑ cos (ϑ) dϑ

 −→
iy

= −k2t

∫
S

−→
M0 dS

(32)
wherein

−→
M0 is the value at the center of the circle,

which must be expressed in Cartesian coordinates:
−→
M0 =

M0x
−→
ix +M0y

−→
iy

To evaluate (32) we need Mϑ

(
∆r
2 , ϑ

)
, ∂(r·Mr)

∂r

∣∣∣
r=∆r

2 ,ϑ

along C, and therefore outside the discretization grid. In
order to include (32) into the FD matrix, we must express
both in terms of

−→
M at the discretization points, one as an

average, and the other as a finite difference. Since
−→
M0 does

not have polar components, Mϑ

(
∆r
2 , ϑ

)
, ∂(r·Mr)

∂r

∣∣∣
r=∆r

2 ,ϑ

must be computed as (compare Fig.7) :

Mϑ

(
∆r

2
, ϑ

)
=

1

2

[
Mϑ (∆r, ϑ) + lim

ε→0
Mϑ (ε, ϑ)

]
=

1

2

[
Mϑ (∆r, ϑ) +

(
M0,y cos (ϑ)−M0,x sin (ϑ)

)]
∂ (rMr)

∂r

∣∣∣∣
∆r
2 ,ϑ

=

[
(rMr)|∆r − limε→0 (rMr)|ε

∆r

]
=

=

[
∆rMr (∆r, ϑ)− 0

∆r

]
= Mr (∆r, ϑ)

(33)
Therefore:

∫
C

∂ (rMr)

∂r

∣∣∣∣
∆r
2 ,ϑ

cos (ϑ)
∆r

2
·dϑ =

N∑
q=1

Mr,q cos (ϑq)∆ϑ

(34)

∫
C

∂ (rMr)

∂r

∣∣∣∣
∆r
2 ,ϑ

sin (ϑ)
∆r

2
·dϑ =

N∑
q=1

Mr,q sin (ϑq)∆ϑ

(35)
where Mr,q = Mr (∆r, q∆ϑ), and :

+π∫
−π

Mϑ sin (ϑ) dϑ =

=
∆ϑ

2

N∑
q=1

[Mϑ,q +M0,y cosϑq −M0,x sinϑq] sinϑq

(36)

+π∫
−π

Mϑ cos (ϑ) dϑ =

=
∆ϑ

2

N∑
q=1

[Mϑ,q +M0,y cosϑq −M0,x sinϑq] cosϑq

(37)
where Mϑ,q = Mϑ (∆r, q∆ϑ). Summing (35) and (37)

we get, for the x–component of the l.h.s. of (32):

∆ϑ

2

N∑
q=1

[2Mr,q cosϑq +Mϑ,q sinϑq

+Mq
0,y sinϑq cosϑq −Mq

0,xsin
2ϑq

] (38)
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In the same way, summing (34) and (36) we get, for the
y–component of the l.h.s. of (32):

∆ϑ

2

N∑
q=1

[2Mr,q sinϑq −Mϑ,q cosϑq

−Mq
0,y sinϑq cosϑq +Mq

0,xcos
2ϑq

] (39)

4.2. Elliptic waveguides

In the same way as the circular case, in an elliptic waveg-
uide,

−→
M is evaluated only on the points of an elliptic grid

(see Fig.8) with spacing ∆u, ∆v.

Figure 8: Geometry of the elliptic cylindrical coordinates.

The expression of the Laplace vector operator in elliptic
coordinates can be simplified if we let

−→
A = h

−→
M , where

h =
1

af
√

sinh2u+ sin2v

is the common value of the scale factor, 2af being the inter–
focal distance. The u component of ∇2

t

−→
M is:

− 1

h5
· ∂h

2

∂u
· ∂Au

∂u
+

1

h3

∂2Au

∂u2
−

1

h5
· ∂h

2

∂u
· ∂Av

∂v
− ∂h

∂v
· 1

h3
· ∂ (Av)

∂u
+

∂h

∂v
· 1

h3
· ∂Au

∂v
+

1

h5
· ∂h

2

∂v
· ∂Av

∂u
−

1

h5
· ∂h

2

∂v
· ∂Au

∂v
+

1

h3
· ∂

2 (Au)

∂v2

(40)

and the v components is:

− 1

h5
· ∂h

2

∂v
· ∂Au

∂u
−

1

h5
· ∂h

2

∂v
· ∂Av

∂v
+

1

h3

∂2Av

∂v2
+

1

h3
· ∂

2 (Av)

∂u2
− 1

h5
· ∂h

2

∂u
· ∂ (Av)

∂u
+

1

h5
· ∂h

2

∂u
· ∂Au

∂v

(41)

Figure 9: Internal point of the elliptic cylindrical coordi-
nates (grid TE).

For each internal grid point, as in Fig.9, a second order
Taylor approximation allows to discretize the Laplace op-
erator (40,41) in terms of the current samples at the neigh-
boring points. The resulting derivatives are as follows:

∂Au

∂u
=

AD,u −AB,u

2∆u
∂Av

∂u
=

AD,v −AB,v

2∆u
∂Au

∂v
=

AC,u −AA,u

2∆v
∂Av

∂v
=

AC,u −AA,u

2∆v
∂2Au

∂u2
=

1

(∆u)
2 (AD,u +AB,u − 2AP,u)

∂2Av

∂v2
=

1

(∆v)
2 · (AC,v +AA,v − 2AP,v)

(42)

The same simplification is obtained for the second
equation (5) for the elliptic case, since letting

−→
A = h

−→
M

makes this equation almost identical to the rectangular case:

1

h2
·
(
∂Av

∂u
− ∂Au

∂v

)
=

1

h2
·
(
AC,u −AA,u

2∆u
− AD,v −AB,v

2∆v

)
= 0

(43)

The singular points of the elliptical framework, either
the foci, or the points on the inter–focal segment, require a
different treatment. For a focus of the ellipse (Fig.10), as in
the circular case, we use the integral form of the eigenvalue
equation, as in (25–27). The central term of (26) becomes
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Figure 10: Focus A of the ellipse.

∫
C

∇t

−→
M · −→in · dl =

∫
C

1
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∂u
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∫
C

1

h2
· ∂Mv

∂v
· −→indl

(44)

The integrals are divided in 4 parts. We describe here
in details only the evaluation of the part over C1. Letting
Q =

(
a, ∆v

2

)
and R =

(
∆u
2 , 0

)
, we have

∫
C1

1

h2
· ∂Mu

∂u
· −→in · dl =

∆u
2∫

o

1

h2
· ∂Mu

∂u
· −→in · h · du =

1
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∣∣∣∣
xp

·

∆u
2∫

o

∂Mu
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· du =

−−→
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h (Q)

[
Mu(A) +Mu(B) +Mu(C) +Mu(D)

4

− Mu(A) +Mu(B)

2

]
(45)

and

∫
C1

1

h2

∂Mv

∂v

−→
indl =

1

h

−→
in

∂Mv

∂v
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Q
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2∫

0

du =

1

h (Q)

(
−−→
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) (
Mv(B)−Mv(A)

∆v

)
∆u

2

(46)

The same approach can be used for points on the inter–
focal segment, such as the one in Fig.11

Figure 11: Point between foci.

5. Numerical Solution and Results
In all cases considered, we get a constrained eigenvalue
problem as: {

Ax = λx
CTx = 0

(47)

where A is a (2n,2n) matrix, and C is (2n,m) with n > m
and λ = −k2t . Of course, A is the discrete laplace opera-
tor, including the boundary condition, and C is the discrete
form of the constrain ∇t ×

−→
M = 0.

We can solve [11] (47) using the QR factorization:
C = Q · R where Q is an orthogonal (2n,2n) matrix(
Q−1 = QT

)
and R is a upper triangular matrix (2n,m).

Substituting in second equation of (47) we get:

CT · x = (Q ·R)
T · x =

RT ·QT · x = RT ·
(
QT · x

)
= 0

(48)

which suggest to change the unknown as:

y = QT · x ⇒ x = Q · y (49)

so as (48) becomes:

CT · x = RT · y = 0 (50)

Replacing x = Q ·y in the first of (47) and multiplying
all members by QT we obtain:

A ·Q · y = λ ·Q · y ⇒ QT ·A ·Q · y =

QT · λ ·Q · y ⇒ By = λy
(51)

where B = QT ·A ·Q is a (2n,2n) matrix. The unknown

can be partitioned in two vector y =

∣∣∣∣uv
∣∣∣∣, where u and v

are (n,1) vector. Then equations (50), (51) are rewritten in
partitioned form as:


B · y = λ · y ⇒

∣∣∣∣ B11 B12

B21 B22

∣∣∣∣ ·
∣∣∣∣∣uv

∣∣∣∣∣ = λ

∣∣∣∣∣uv
∣∣∣∣∣

RT · y = 0 ⇒
∣∣ T1 0

∣∣ · ∣∣∣∣ u
v

∣∣∣∣ = 0

(52)
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where Bij are (n,n) matrices, and T1, is an (invertible) tri-
angular matrix . The second equation of (52) becomes:

T1 · u = 0 → u = 0 (53)

Therefore the first of (53) becomes:

B22 · v = λv (54)

and we need to extract the eigenvalues and eigenvectors of
B22.

This discretized eigenvalues problem must be solved by
numerical routine and the full matrix routines of Matlab
have been used. The waveguide modes can then be ob-
tained, from the eigenvalues v of B22, as

x = Q ·

∣∣∣∣∣0v
∣∣∣∣∣ (55)

Using MATLAB routines, we have performed an exten-
sive validation of the approach presented. Some results are
shown in the following, while a wider collection of data can
be found in [12].

Table 1 shows the validation test for a rectangular
waveguide, whose size (in normalized units) is 3.35×1.65,
discretized in 134×66 square discretization cells. Our data
have been compared with the known analytical results [2],
both for the eigenvalues and the mode vectors. The same
comparison has been made in Table 2 for a circular waveg-
uide, with a radius equal to 4 (in normalized units), and us-
ing discretization steps of ∆r = 0.0396, ∆ϑ = 1o. In both
tables kta and ktpv are the eigenvalues computed analyti-
cally [2] and using our approach, e% is the percentage error
between them, and the last column shows the RMS differ-
ence between analytical mode vectors, and those compured
using (55).

From these data, it appears that our technique is able to
give all mode data with a very small error, both on eigen-
values and on eigenvectors. The error on the former is no
larger than 0.3% for the rectangular guide and significantly
smaller than this for the circular case. The RMS error on
normalized modes is even smaller, being less than 5 · 10−8

in both cases.
Table 3 shows the validation test for an elliptic waveg-

uide, with a length of the minor axis (in normalized units)
equal to 4, and different eccentricities ecx, discretized with
∆v = 1o, and a different number Nu of discretization el-
lipses. Though an analytical solution is available for elliptic
waveguides [9], it effectiveness is very poor, and many nu-
merical techniques has been proposed in the literature. As
in many of those papers, we use, for our comparison, the
eigenvalues kta obtained from the cut-off wavelength data
reported in [13].

From the data in Table 3, it is clear that, for all cases
shown, the eigenvalues ktpv computed from our techniques
are very accurate.

Table 1: Validation test for a rectangular waveguide.

n,m kta ktpv e%
RMS error

·10−6

10 0.93779 0.93777 0.002 0.000
20 1.87558 1.87541 0.017 0.001
01 1.90400 1.90382 0.017 0.001
11 2.12242 2.12225 0.017 0.014
21 2.67264 2.67238 0.026 0.002
30 2.81337 2.81280 0.057 0.002
31 3.39709 3.39650 0.059 0.031
40 3.75116 3.74981 0.134 0.005
02 3.80799 3.80662 0.137 0.005
12 3.92177 3.92041 0.135 0.036
41 4.20670 4.20540 0.131 0.056
22 4.24483 4.24347 0.136 0.058
50 4.68894 4.68632 0.262 0.010
32 4.73454 4.73300 0.153 0.054
51 5.06077 5.05823 0.254 0.081
42 5.34527 5.34322 0.206 0.017

Table 2: Validation test for a circular waveguide.

n,m kta ktpv e%
RMS error

·10−6

11 0.46030 0.46029 0.001 0.000
21 0.76356 0.76353 0.004 0.001
01 0.95793 0.95770 0.024 0.001
31 1.05030 1.05020 0.009 0.001
41 1.32939 1.32917 0.016 0.001
12 1.33286 1.33247 0.029 0.017
51 1.60390 1.60348 0.026 0.002
22 1.67653 1.67595 0.035 0.068
02 1.75390 1.75249 0.080 0.001
61 1.87532 1.87459 0.039 0.002
32 2.00381 2.00297 0.042 0.119
13 2.13408 2.13217 0.089 0.130
71 2.14446 2.14331 0.054 0.002
42 2.32060 2.31942 0.051 0.173
81 2.41186 2.41015 0.071 0.002
23 2.49237 2.48991 0.099 0.491

6. Conclusions
A Vector Finite Difference tecnique has been proposed for
the computation of the modes and eigenvalues of rectangu-
lar, circular and elliptical waveguides. A suitable choice
of the discretization grid, which exacly fits the waveg-
uide boundary, allows to obtain a very effective and accu-
rate procedure. The presented approach has been assessed
against analytical modes of rectangular and circular waveg-
uides, and data available in the open literature for elliptical
waveguides. The agreement is excellent in all the cases.
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