META 2021, META'12

Font Size: 
Isotropic Metal-Dielectric Composites for Subwavelength Imaging
Zsolt Szabó, Yasaman Kiasat, Er Ping Li

Last modified: 2012-01-13

Abstract


After reviewing the requirements, which has to be satisfied by a metamaterial based subwavelength imaging systems a thin films lens is reported herein. The material of the lens is a composite of spherical Ag nanoparticles embedded in SiO2 host material. The image of the lens is calculated, by solving the Maxwell equations, with the Transfer Matrix method. The procedure applies Maxwell-Garnet mixing rule and high frequency effective medium theory to calculate the electromagnetic parameters of the composite material. The formula of the composite material, the optimum working frequency and the thicknesses of the layers are determined minimizing the absolute difference between the source and image. The details of the design procedure are presented and optimized configurations obtained under different constrains are discussed. The main advantage of the composite lens is that it can eliminate the ‘hotspots’ present in the images of metallic superlens.


Keywords


subwavelength imaging, composite material

Full Text: PDF