Parity-Time Symmetry Breaking beyond One Dimension: the Role of Degeneracy

Li Ge1,2 and A. Douglas Stone3

1Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, NY 10314, USA
2The Graduate Center, CUNY, New York, NY 10016, USA
3Department of Applied Physics, Yale University, New Haven, CT 06520-8482, USA
li.ge@csi.cuny.edu

Abstract—We consider the role of degeneracy in Parity-Time (PT) and Rotation-Time symmetry breaking for non-hermitian wave equations beyond one dimension. We show that the non-hermicity of the system eigenmodes can either onset abruptly as in typical PT-symmetric systems or be a linear function of the gain/loss parameter. These results are illustrated by using different T-breaking perturbations of a uniform dielectric disk and sphere, and a group theoretical analysis is given in the disk case.

Parity-Time (PT) symmetric systems have attracted considerable interest in the past few years. These are non-hermitian systems which are invariant under the combined action of a parity and time-reversal operation. In the case of closed Hamiltonian systems the transition is from a regime of real energy eigenvalues to complex conjugate pairs of eigenvalues as the degree of non-hermiticity is increased [1]. For the case of open, scattering systems, the transition is seen in the eigenvalues of the scattering matrix, which can remain on the unit circle despite the non-hermiticity up to some threshold and then depart from it in pairs with inverse moduli [2, 3]. In both cases the transition occurs when two eigenvalues coincide at an exceptional point (EP) which corresponds not to a degeneracy of the relevant operator but to a point at which it becomes defective (two eigenvectors coalesce), and hence is non-diagonalizable [4, 5, 6]. A major application of the theory of PT-symmetry breaking is to the wave equation of electromagnetism where the possibility of adding gain and loss in a PT-symmetric manner allows observation of many intriguing phenomena [7, 8, 9, 10, 11, 12].

Essentially all of the work on PT-symmetry breaking has focused on one-dimensional (1D) or quasi-1D (coupled waveguide) systems. These systems can never have a high enough symmetry group to generate generic degeneracies. In the current work we focus on two-dimensional (2D) and three-dimensional (3D) PT-symmetric scalar wave systems, described by the Helmholtz equation

\[-\nabla^2 \phi(\vec{r}) = \left[\epsilon_c(\vec{r}) + i\tau g(\vec{r}) \right] \frac{\omega^2}{c^2} \phi(\vec{r}), \]

which can have the new feature of continuous symmetries and generic degeneracies in the absence of the T-breaking non-hermitian perturbation. The cavity dielectric function \(\epsilon_c(\vec{r}) \), gain and loss strength \(\tau \), and their spatial profile \(g(\vec{r}) \) are real quantities. We adopt the convention that \(\tau \) is non-negative, with which \(g(\vec{r}) < 0 \) (\(> 0 \)) represents gain (loss).

As we show in Fig. 1(a), the PT-transition is absent in such systems if \(T \) is generically broken, meaning that they do not have a real spectrum even when the T-breaking is infinitesimal. However, if \(T \) is not generically broken, i.e. if some further discrete spatial symmetries are preserved, then it is possible that either the entire spectrum remains real over a finite interval (standard PT behavior; see Fig. 1(b)) or a finite subset of the degenerate spectrum does (see Fig. 1(c)).

These scenarios are analyzed using a coupled-mode theory and generalized “point groups” \(S \equiv \{ PT, \chi \} \), where \(\chi \) includes the identity operator 1. The examples examined in Fig. 1(b) and (c) have \(v \) angular blocks of equal area, and the corresponding \(S \) is a generalization of the dihedral group, \(D_{2v} \), describing the symmetries of regular polygons of \(v \) sides. \(D_{2v} \) contains \(2v \) elements, including 1, \(v \) − 1 rotations, and \(v \) reflections. We denote the relevant generalization of this group to our system as \(D_{PT} \). The difference between \(D_{PT} \) and \(D_{2v} \) is due to the effect of \(T \) breaking while \(PT \) is preserved. One finds that \(v \) elements in \(D_{2v} \) are no longer symmetry operators, but become so again when multiplied by \(T \). This can be shown to be a general property of generalized point groups with \(PT \) symmetry. For the “PT-wheel” configuration shown in Fig. 1(c), \(S = \)
Figure 1: Different PT-transition scenarios in a 2D disk geometry. (a) Absence of PT transitions with no additional discrete symmetry. (b) Protected PT transitions and an entirely real spectrum at small τ with additional discrete symmetries. (c) Partial transitions with additional discrete symmetries. Insets show the corresponding gain (G) and loss (L) profiles.

$DT_8 \equiv \{1, PT, P_{\frac{\pi}{4}}, P_{\frac{\pi}{2}}T, R_{\phi}T, R_{\pi}, R_{\frac{3\pi}{2}}T\}$, and removing the 4 T-operators gives the original D_8 group. Here R_{ϕ} denotes clockwise rotation about the origin by ϕ. The difference between this case that that in Fig. 1(b), described by DT_{12}, is the lack of an operator that decouples all pairs of degenerate modes in the disk geometry, which can be, for example, $P_{\frac{\pi}{2}}$ or $R_{\pi}T$. These operators protect PT-transitions at a finite T-breaking perturbation, without which some pairs of eigenmodes, if not all, acquire a finite non-hermicity at infinitesimal τ and be in the PT broken phase. Interestingly, the dihedral group has another generalization with PT-symmetry, and the cyclic group can also be generalized.

In addition, our analysis shows that other composite symmetries which can occur in higher dimension, such as RT where R represents rotation by π, can behave differently from PT and can exhibit a fully real spectrum when the corresponding PT system does not. Our analysis also shows that it is possible for multimode coupling to restore the PT-symmetric phase, at finite T-breaking, if it is appropriately tuned. We thank Konstantinos Makris, Ramy El-Ganainy, Stefan Rotter, and Jan Wiersig for helpful discussions. This project was partially supported by PSC-CUNY 45 Research Grant and NSF under Grant No. ECCS 1068642.

REFERENCES