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Metamaterials are crystal-like composites, derived by
spatial translations from a generating cell, where high-
frequency electromagnetic fields propagate in surprising
ways at some frequencies:  Negative refraction, "bending
light the wrong way", refocusing of divergent beams
into tightly parallel ones, are observed, and attributed
to the fact that, at a spatial scale higher than the cell
size, the composite behaves as a homogeneous material,
but one with "emerging" properties, not possessed by
any of the components.

More specifically, this material may have, when
used in chunks much larger than its cell size, and
within a specific frequency range, an "effective" perme-
ability  µeff  and permittivity  εeff  (both complex and
frequency-dependent) with negative real parts, hence an
index  n = (εµ/ε0µ0)

1/2  which can have a negative real
part, too.  (Imaginary parts, which cause losses, and
are negative, can be made relatively small, so there be
little attenuation of propagating waves.)  Hence the
somewhat eery properties of these so-called "negative-
index materials" (NIM).  Such materials can be produced,
and are actively studied:  The prospect of, for instance,
making quality lenses with only plane interfaces, is
enough to justify this interest.
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Fig. 1.  Determining the effective permeability of a
conductive grid, made of non-magnetic metal (µ = µ0,  ε =
ε0 – iσ/ω).  Average field  H, at angular frequency  ω, is
forced through this material by Ampère-turns around the
magnetic circuit, in which an induction  Re[µeff H exp(iωt)]
can be measured (as sketched in the left of the picture).
The effective permeability  µeff  thus obtained is complex,
with real part lower than  µ0:  A  "permittivity
contrast" (between  ε  and the  ε0  of the air) thus induces
diamagnetism—a well-known phenomenon, that standard,
"static" homogenization (see text) cannot account for.
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For a very simple example, consider the situation
of Fig. 1:  An  AC  field  H  is forced through a
sample of metamaterial, and the resulting flux in the
laminated iron core is measured.  With proper correction
for edge effects (which post-homogenization numerics
will provide), this setup allows one to determine  µeff.
The real part of this "homogenized" permeability is
found to be lower than  µ0, which is not surprising:
Within the right frequency window, skin effect excludes
the magnetic field from the conductive part, hence a
smaller induction flux, for a given  H, than in air.

One might feel like predicting this effect by using
classical homogenization theory [1], along the
following lines.  Let us cast the problem as

(1) –iω ε e + rot h = js,   iωµh + rot e = 0,

in all space, with source current  j s.  To account for
the fact that coefficients  ε ≡ ε0 – iσ/ω  and (possibly)
µ vary rapidly with position  x  in the region  M
occupied by the metamaterial, we assume they are
"Cα-periodic" inside  M, meaning that  ε(x + αvi) =
ε(x)  for  x  inside  M  and all three vectors  v i  that
subtend the "master cell" (Fig. 2) from which the
metamaterial is generated.  The solution  {eα, hα}  of
(1) then depends on the small non-dimensional parameter
α, and the purpose of the theory is to show the
existence, when  α → 0, of an appropriately weak
limit  {e0, h0}, to be characterized as the solution of
some partial differential equations system.
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Fig. 2.   Left: part of the grid, as a union of congruent
homothetic images of the "master cell", right. The latter
is taken of size  L, comparable to the device's dimensions
in Fig. 1.  The actual size of a generic cell of  M  is then
αL, with small  α.

 As proved under more general assumptions in [2],
this "limit problem" is



(2)      –iω εeff e0 + rot h0 = js,   iωµeff h0 + rot e0 = 0,

where the linear operators  εeff  and  µeff  are obtained
by solving the "cell problem"

(3) εeff E · E = argstat{∫Cα ε |E + grad ψ|2}/vol(Cα)

and its homologue in  H,

(4) µeff H · H = argstat{∫Cα µ |H + grad ϕ|2}/vol(Cα).

Let's decipher this: All quantities are complex valued,
with an overbar for conjugation;  E  and  H  are
ordinary 3D vectors ( ·  denotes the dot product),  ψ
and  ϕ  are  Cα-periodic potentials, and "argstat"
means "stationarize the right-hand side with respect to
the potential and get the corresponding critical value";
this value is then a quadratic form of the vector parameter
E  or  H, the 3 × 3  matrix of which is, up to
conjugation, the sought-for  εeff  or  µeff.

One can check, by treating examples where  ε  or
µ  oscillate in one spatial direction only, that (3) and
(4) consist in taking averages, arithmetic of harmonic
as the case may be, of  ε  and  µ  in  C.  So the
procedure is a kind of sophisticated, "energy-oriented",
averaging of  ε  and  µ.  (Which is already worrisome:
What hope is there to get the negative values
characteristic of NIMs by averaging essentially positive
coefficients?)  Clearly, anisotropy can occur (this
depends on the symmetries, or lack thereof, of the
cell), and complex-valued  ε  and  µ  result in complex-
valued effectives.  But it's also plain that (3) and (4)
are decoupled problems:  Therefore, periodic variations
of  σ, i.e., of  ε, cannot affect  µeff, contrary to the
evidence offered by the Fig. 1 setup.  Note also that
εeff  and  µeff  do not depend on  ω , again, contrary to
observations.

Yet, this is backed by a convergence theorem, so
what went wrong?  We have a family of problems
indexed by a parameter  α, there is a limit when  α
→ 0, and since the actual, real-life value of  α  we
have at hand is small, we should be justified in taking
{e0,  h0}, for all purposes, as an approximation to
{e0,  h0}.  In particular, the  µeff  provided by the
cell-problem (4), which one can denote by  µ0  (a
scalar in the isotropic case of Fig. 2) can serve as
estimate of the  µα  that an accurate numerical simulation
of the experiment of Fig. 1, should we have the
power and means to tackle it, would give.  Or can it?

That this reasoning if off the mark can be seen by
thinking about the role played by skin effect in the
experiment of Fig. 1.  Flux is excluded from the
metal because the ratio  δ/αL  of skin depth to cell
size is small, for actual values of the parameters.  But
by embedding the problem in the  α-indexed family,
we lose this essential qualitative feature when  α →
0, whereas it should be preserved in order to capture
the induced diamagnetism phenomenon.

How can that be done?  Remark that skin effect
results from the "contrast" between the values  σ  and

iω ε0  of "conductivity" of the metal and the air around,
with a small value of  β = (ω ε0/σ)2, where the power
2 is for future convenience.  So there are, actually,
two small parameters, α and  β, to consider in the
modelling, and the actual field,  {eαβ, hαβ}, is one in a
doubly-indexed family.  Looking for the limit when
both tend to 0, we realize that there is no such thing:
{0, 0}  is a singular point of the map  {α, β} → µαβ,
which behaves as suggested by Fig. 3.  Since the
feature to be modelled is linked with the ratio  δ/α,
the proper one-parameter family in which to embed
the actual problem is characterized by a constant value
(the physically realized one) of the ratio  β/α.
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Fig. 3.   Typical behavior of observed  µ  as a function
of cell size (α) and contrast (β).  The non-continuity at
{0, 0}  defeats classical homogenization.

So again, we may investigate the limit, and establish
a convergence theorem.  But the cell-problem this
points to is very different from (3)(4).  It reads

(5) –iωε (e – iω /2 B × x) + rot(h + iω /2 D × x) = 0,

(6)  iωµ(h + iω /2 D × x) + rot(e– iω /2 B × x) = 0,

where  B × x  is short for the vector field  x → B × x,
with  B  and  D  two 3D-vector parameters, and  e
and  h  Cα-periodic.  Taking the mean value of  e  and
h  over the cell, one gets  E  and  H, which relates to
D  and  B  via a 6 × 6  matrix.  Hence, as will be
developed, the expected  "emergent properties" of meta-
materials:  cross-dependence of  B  and  D  on  E  and
H  respectively ("chirality") and possibility of negative
effective partameters.  The latter comes from the fact
that the Lagrangian underlying (5)(6) is the difference
between magnetic and electric energy, hence a non-
definite quadratic form.
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