

"Vivaldi Antenna for UWB Communications" (Paper ID:218, Track ID-2211, Session-3, 22/10/2016)

BY

BIKASH RANJAN BEHERA

M.E. (Wireless Communication)

Dept. of ECE, Birla Institute of Technology Mesra, Patna Campus, Bihar, India bikash.r.behera@ieee.org

OUTLINE OF THE PRESENTATION

Ч	Roadinap
	Objective
	Introduction

D D a a days are

- ☐ Antenna Design
- ☐ Results, Discussion and Analysis
- ☐ Appendices
- ☐ Conclusion
- ☐ References

ROADMAP

OBJECTIVE

<u>INTRODUCTION</u>

- Since Federal Communications Commission's choice of allowed the unlicensed operation from 3.1 GHz to 10.6 GHz in 2002, UWB has been progressively developed from the academics to the industry fields.
- A UWB antenna should be designed with the characteristics of: small size, good impedance matching, minimum group delay and omnidirectional radiation pattern.
- In the recent years, Vivaldi antennas have received quite vast attention due to wide bandwidth characteristics. It belongs to the class of a periodic & continuously scaled antenna structures with exponentially tapered curve with significant flatness of gain.
- ☐ They are widely used in UWB applications: ground penetration radar, satellite communication, medical treatment and vehicular wireless communication.
- ☐ Therefore, it can be concluded that Vivaldi Antenna is a good candidate for UWB as:
 - 1. Wide Impedance Bandwidth.
 - 2. Stable Radiation Pattern.
 - 3. High Gain Characteristics.

ANTENNA DESIGN

Parameters	Dimensions
Flare Height, <i>Hf</i>	82.44 mm
Flare Length, <i>Lf</i>	157.4 mm
Height of Conductor, Hc	104.9 mm
Width of Slotline, Ws	1 mm
Cavity Diameter, Dc	29.98 mm
Distance from Back Wall to Cavity, <i>Sc</i>	29.98 mm
Distance from Cavity to Feed, Sf	1.5 mm
Length of Slotline, Ls	3 mm
Substrate	Rogers 5870
Relative Permittivity	2.33

RESULTS, DISCUSSION AND ANALYSIS

EXPLORATION OF OUTCOMES

- Impedance V/s Frequency Plot (*Top Left*).
- S₁₁ Characteristics Plot (*Top Right*).
- VSWR Characteristics Plot (Bottom Left).
- Covers entirely 2-12 GHz, with an -10 dB Impedance Bandwidth of 10 GHz & UWB from 3.1-10.6 GHz where $S_{11} < \text{-}10$ dB.
- VSWR < 2.

EXPLORATION OF OUTCOMES-I

- Radiation Pattern at 2 GHz (*Top-Left*).
- Radiation Pattern at 7 GHz (*Bottom-Left*).
- Radiation Pattern at 12 GHz (*Top-Right*).
- It has an End-Fire Radiation Pattern.
- Symmetric Beam is observed in E-Plane and H-Plane over the wideband, provided all the dimensions are calculated properly.

EXPLORATION OF OUTCOMES-II

- Highest Gain of 12.27 dBi at 9.5 GHz.
- Consistent Gain of above 10 dBi from 5-13 GHz is observed.
- These facts makes the Vivaldi Antenna, a good antenna for UWB Applications.

- MMIC Analysis in terms of L-C Matching.
- L=0.49 nH and C=0.306 pF at 50 Ω .

EXPLORATION OF OUTCOMES-III

Parameters	Optimum Range	Used Here
Population Range	30-100	55
Probability of Crossover	0.6-0.9	0.8
Probability of Mutation	0.01-0.1	0.06
Replacement Strategy	Steady State	Steady State

- Genetic Algorithm (GA) describes the effect of the constructional parameters on a overall behaviour and it helps to extract out the best possible combinations in a optimized way.
- Important concepts in GA:
 - ✓ Population (*Set of Trials*)
 - ✓ Parent (*Member of Current Generation*)
 - ✓ Child (*Member of Next Generation*)
 - ✓ Generation (*GA iterations / Successively Created populations*)
 - ✓ Chromosome (Coded Form of Trial Sol. Vector/String Consisting of Genes/Alles)
 - ✓ Fitness (Positive Numbers Assigned to Individual, Representing a Measure of Goodness)

EXPLORATION OF OUTCOMES-III < CONTINUED>

- Why Genetic Algorithm* is chosen over others?
 - ✓ Operates → group/population of trial solutions in parallel.
 - ✓ Operates on → coding of function parameters/chromosomes rather than individual parameters themselves.
 - ✓ Uses out → simple, stochastic case (*selection*, *crossover* & *mutation*) as operators to explore solution domain.
- * J.M.Johnson and Y.Rahmat-Samii, "Genetic algorithm in engineering electromagnetics", *IEEE Antennas and Propa-- gation Magazine*, Vol. 39, No. 4, 1997, pp. 7-21.

- Certain Guidelines to be followed while implementing on Genetic Algorithm*:
 - ✓ Population Size: 30-100
 - ✓ Probability of Crossover: 0.6-0.9
 - ✓ Probability of Mutation: 0.01-0.1
 - ✓ Replacement Strategy: Steady State

Additional Effects:

- ✓ Large Populations leads to more Genetic Diversity and scopes Faster Convergence.
- ✓ High Crossover Probability leads to Faster Searching.
- ✓ Low Mutation Value makes the Average Fitness far from Optimal Values.

EXPLORATION OF OUTCOMES-IV

Parameters	[8]	[9]	[10]	Proposed Antenna
Bandwidth Range	3-11 GHz	3.1-10.6 GHz	2 GHz	2-12 GHz
Gain	7.8 dBi	~7.2 dBi	5.9 dBi	12.27 dBi
Resonating Frequencies	S, C and few X- Bands	S and C-Bands	C-Band	S, C and X- Bands

[8]. H.Shin, J.Kim and J.Choi, "A Stair-Shaped CPW-fed Printed UWB Antenna for WBAN", *Asia Pacific Microwave Conference*, 2009, pp. 1965-1968.

[9]. S.Ghosh, "Band Notched Modified Circular Ring Monopole Antenna for UltraWideband Applications", *IEEE Antennas and Wireless Propagation Letters*, Vol. 9, 2010, pp. 276-279.

[10]. Y.S.Hu, M.Li, G.P.Gao, J.S.Zhang and M.K.Yang, "A Double Printed Trapezoidal Patch Dipole Antenna for the UWB A pplications with an Band-Notched Characterstics", *Progress in Electromagnetic Research*, Vol. 103, 2010, pp. 259-269.

Constructional Parameters	Dimensions in mm
Flare Height, <i>Hf</i>	65.95 -82.44 -98.93
Flare Length, <i>Lf</i>	110.2- 157.6- 204.6
Height of Conductor, <i>Hc</i>	104.9 -125.9
Width of Slotline, Ws	1 -1.5
Cavity Diameter, <i>Dc</i>	14.99 -29.98- 44.97
Distance from Back Wall to Cavity, Sc	14.99 -29.98- 44.97
Distance from Cavity to Feed, Sf	1.5

"Bold counter parts presents the Dimensions used to design proposed antenna, while Genetic Algorithm is implemented for calculating the Optimized Dimensions in case of Vivaldi Antenna for UWB Applications"

APPENDICES-II

- In order to design Vivaldi Antenna, certain guidelines must be followed as:
 - ✓ Flare Height should be greater or equal to a half-wavelength at minimum operating frequency.
 - ✓ Flare Length should be greater than or equal to a wavelength at minimum operating frequency.
 - ✓ Beamwidth decreases & directivity increases as Flare Length is increased.
 - ✓ To decrease (increase) input impedance, decrease (increase) the Slotline Width.
 - ✓ Taper factor influences impedance match and beamwidth.
 - \checkmark Cavity diameter should be equal to 0.2 λ at minimum operating frequency.

"Flare Height, Flare Length, Slotline Width, Taper Factor, Cavity Diameter"

CONCLUSION AND FUTURE SCOPE

- Relevance's drawn from the proposed antenna: Bandwidth Range of 2-12 GHz and Gain of 12.27 dBi at highest level.
- It produces operational frequencies : 0-3 GHz for Medical Applications, 2-4 GHz for S-Bands, 4-8 GHz for C-Bands and 8-12 GHz for the X-Band Applications.
- Implementation of Genetic Algorithm lead to extraction of correct approach for enhancing the capability of proposed antenna and to do the parametric variation.
- L-C Matching was carried out to witness its stance for real time scenarios or implications.
- Thus it created a base where these approaches can be made for the Wireless Communication Systems especially for Antenna's.

Future Expansion

• In future, Metamaterials are to be incorporated in order to increase all the major functionalities to a certain level i.e. to achieve Band-Notching characteristics.

<u>REFERENCES</u>

for Humanity

- 1. Federal Communications Committee (FCC's), "The First Report and Order, Revision of Part 15 Commission's Rule regarding Ultra Wideband Transmission Systems," FCC 02-48, 2002.
- 2. I.Oppermann, M.Hamalainen and J.Ilinati, "UWB Theory and Applications" *John Wiley and Sons Ltd*, West Sussex, 2004, pp. 28-32.
- 3. A.Patro, P.Suraj and B.R.Behera, "Achievement of Various Bands in UWB Range", *IEEE 1st International Conference on Microelectronics, Communication and Computing (MicroCom)*, Durgapur, 2016, pp. 1-5.
- 4. P.J.Gibson, "The Vivaldi Aerial", 9th European Microwave Conference, Brighton, UK, 1979, pp. 101–105.
- 5. M.C.Greenberg, "Performance Characteristics of Dual Exponentially Tapered Slot Antenna for Wireless Communications Application", *IEEE Transactions on Vehicular Technology*, Vol. 52, No. 2, 2003, pp. 305-312.
- 6. L.Tianming, R.Yuping and N.Zhongxia, "Analysis and Design of UWB Vivaldi Antenna", *Int. Symposium on Microwave, Antenna, Propagation and EMC Tech. for Wireless Technologies*, 2007, pp. 579-581.
- 7. A.Sutinjo and E.Tung, "The Design of Dual Polarized Vivaldi Array", *Microwave Journal*, 2004, pp.1-5.

AUTHOR'S INFORMATION

Name-Bikash Ranjan Behera

Qualification-Master in Engineering (Master's in ECE)

Domain-Wireless Communication

Organization-Birla Institute of Technology Mesra,

Patna Campus, Bihar, India

IEEE E-Mail: bikash.r.behera@ieee.org

Personal E-Mail: <u>bikashranjan.behera@gmail.com</u>

This presentation was prepared for 2016 2nd IEEE International Conference on Control Computing Communication and Materials (ICCCCM-2016) held at Allahabad, Uttar Pradesh, India on October 21-22, 2016.

My research interest includes EBG Structures, Printed Antenna, Metamaterials, Circuit Analysis, Genetic Algorithm & UWB Antennas. I had authored in 2 Journals (SCI-Indexed) and 2 Journals (Thomson Reuters) & holds on IEEE Conference publications/ acceptance of 19 articles at the time of pursuing Masters (2016) and working as Associate (2017). I am associated with IEEE-Associate Member in Antenna and Propagation Society, Communication Society and Networking Consultant.

